Priloha: Analytika k otáz4ám $12,13,14,15,17,18,19$

- veblar

$$
\stackrel{\text { lor }}{-\vec{M}}=\left(\mu_{1}^{\prime} ; \mu_{2} \ldots \nmid \mu_{n}\right)
$$

- M... romair seblora
- $|\vec{N}| \ldots$ velibosl veblerm $\quad|\vec{M}|=\sqrt{M_{1}{ }^{2}+M_{3}^{2}+\ldots N_{m}{ }^{2}}$

$$
|\vec{M}|=M
$$

- veblor vedonai rboden A do bod B

$$
\begin{gathered}
A\left[X_{A} i Y_{A}\right] \quad B\left[X_{B} i Y_{B}\right] \\
\vec{v}=B-A \\
\vec{v}=\left(X_{B}-X_{A} ; Y_{B}-Y_{A}\right)
\end{gathered}
$$

- Gerrares verbly:
- Märoleń reisiforn ińlem

$$
U \cdot \vec{M}=\left(U M_{1} ;\left(M_{2} ; \cdots i \subset M_{m}\right)\right.
$$

- sirtarmi

$$
\begin{aligned}
& \vec{w}=\vec{\mu}+\vec{v} \\
& \vec{w}=\left(\mu_{1}+v_{1} ; \mu_{2}+v_{2} ; \ldots \mu_{n}+v_{n}\right)
\end{aligned}
$$

- Gotintance
amaloging
- Sbaliarmí näinobero-

$$
\begin{gathered}
\vec{\mu} \cdot \vec{v}=\mu_{1} \cdot v_{1}+\mu_{2} \cdot v_{2}+\ldots+\mu_{n} \cdot v_{n} \\
\cos \alpha=\frac{\vec{\mu} \cdot \vec{v}}{|\vec{u}| \cdot|\vec{v}| \quad \alpha \ldots \text { uhl mers vbly } \vec{\mu} a \vec{v}} \\
\alpha=90^{\circ} \ldots \cdot \vec{u}=(a ; b) \\
\vec{\mu} \cdot \vec{v}=\mu \cdot v \cdot \cos \alpha \quad \vec{v}=(b ;-a) \vee \vec{v}^{2}=(-b ; a)
\end{gathered}
$$

- cublonovénirobbemi - nomí homulalismi!

$$
\begin{aligned}
& \vec{M} \times \vec{v}=\left(\mu_{g} \cdot v_{2}-\mu_{2} \cdot v_{y} ; \mu_{2} \cdot v_{x}-M_{k_{2}} \cdot v_{R j} ; \mu_{x} \cdot v_{y}-\mu_{j} \cdot v_{x}\right) \\
& \vec{M}=\left(\mu_{x} ; \mu_{y j} ; \mu_{A}\right) \mu_{x} \mu_{y} \\
& \vec{v}=\left(v_{x} ; v_{g} ; v_{2}\right) v_{x} v_{y} \\
& |\vec{M} \times \vec{v}|=S \quad|\vec{u} \times \vec{v}|=\mu \cdot v \cdot \sin \alpha
\end{aligned}
$$

- sminiríg Nonirin

